Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.04.22271890

ABSTRACT

The high number of mutations in the Omicron variant of SARS-CoV-2 cause its immune escape when compared to the earlier variants of concern (VOC). At least three vaccine doses are required for the induction of Omicron neutralizing antibodies and further reducing the risk for hospitalization. However, most of the studies have focused on the immediate response after the booster vaccination while the duration of immune response is less known. We here studied longitudinal serum samples from the vaccinated individuals up to three months after their third dose of the BNT162b2 vaccine for their capacity to produce protective antibodies and T cell responses to Wuhan and Omicron variants. After the second dose, the antibody levels to the unmutated spike protein were significantly decreased at three months, and only 4% of the individuals were able to inhibit Omicron spike interaction compared to 47%, 38%, and 14% of individuals inhibiting wild-type, delta, and beta variants spike protein. Nine months after the second vaccination, the antibody levels were similar to the levels before the first dose and none of the sera inhibited SARS-CoV-2 wild-type or any of the three VOCs. The booster dose remarkably increased antibody levels and their ability to inhibit all variants. Three months after the booster the antibody levels and the inhibition activity were trending lower but still up and not significantly different from their peak values at two weeks after the third dose. Although responsiveness towards mutated spike peptides was lost in less than 20 % of vaccinated individuals, the wild-type spike-specific CD4+ and CD8+ memory T cells were still present at three months after the booster vaccination in the majority of studied individuals. Our data show that two doses of the BNT62b2 vaccine are not sufficient to protect against the Omicron variant, however, the spike-specific antibodies and T cell responses are strongly elicited and well maintained three months after the third vaccination dose.

2.
Jeremy Manry; Paul Bastard; Adrian Gervais; Tom Le Voyer; Jérémie Rosain; Quentin Philippot; Eleftherios Michailidis; Hans-Heinrich Hoffmann; Shohei Eto; Marina Garcia-Prat; Lucy Bizien; Alba Parra-Martínez; Rui Yang; Liis Haljasmägi; Mélanie Migaud; Karita Särekannu; Julia Maslovskaja; Nicolas de Prost; Yacine Tandjaoui-Lambiotte; Charles-Edouard Luyt; Blanca Amador-Borrero; Alexandre Gaudet; Julien Poissy; Pascal Morel; Pascale Richard; Fabrice Cognasse; Jesus Troya; Sophie Trouillet-Assant; Alexandre Belot; Kahina Saker; Pierre Garçon; Jacques Rivière; Jean-Christophe Lagier; Stéphanie Gentile; Lindsey Rosen; Elana Shaw; Tomohiro Morio; Junko Tanaka; David Dalmau; Pierre-Louis Tharaux; Damien Sene; Alain Stepanian; Bruno Mégarbane; Vasiliki Triantafyllia; Arnaud Fekkar; James Heath; Jose Franco; Juan-Manuel Anaya; Jordi Solé-Violán; Luisa Imberti; Andrea Biondi; Paolo Bonfanti; Riccardo Castagnoli; Ottavia Delmonte; Yu Zhang; Andrew Snow; Steve Holland; Catherine Biggs; Marcela Moncada-Vélez; Andrés Arias; Lazaro Lorenzo; Soraya Boucherit; Dany Anglicheau; Anna Planas; Filomeen Haerynck; Sotirija Duvlis; Robert Nussbaum; Tayfun Ozcelik; Sevgi Keles; Aziz Bousfiha; Jalila El Bakkouri; Carolina Ramirez-Santana; Stéphane Paul; Qiang Pan-Hammarstrom; Lennart Hammarstrom; Annabelle Dupont; Alina Kurolap; Christine Metz; Alessandro Aiuti; Giorgio Casari; Vito Lampasona; Fabio Ciceri; Lucila Barreiros; Elena Dominguez-Garrido; Mateus Vidigal; Mayana Zatz; Diederik van de Beek; Sabina Sahanic; Ivan Tancevski; Yurii Stepanovskyy; Oksana Boyarchuk; Yoko Nukui; Miyuki Tsumura; Loreto Vidaur; Stuart Tangye; Sonia Burrel; Darragh Duffy; Lluis Quintana-Murci; Adam Klocperk; Nelli Kann; Anna Shcherbina; Yu-Lung Lau; Daniel Leung; Matthieu Coulongeat; Julien Marlet; Rutger Koning; Luis Reyes; Angélique Chauvineau-Grenier; Fabienne Venet; guillaume monneret; Michel Nussenzweig; Romain Arrestier; Idris Boudhabhay; Hagit Baris-Feldman; David Hagin; Joost Wauters; Isabelle Meyts; Adam Dyer; Sean Kennelly; Nollaig Bourke; Rabih Halwani; Fatemeh Sharif-Askari; Karim Dorgham; Jérôme Sallette; Souad Mehlal-Sedkaoui; Suzan AlKhater; Raúl Rigo-Bonnin; Francisco Morandeira; Lucie Roussel; Donald Vinh; Christian Erikstrup; Antonio Condino-Neto; Carolina Prando; Anastasiia Bondarenko; András Spaan; Laurent Gilardin; Jacques Fellay; Stanislas Lyonnet; Kaya Bilguvar; Richard Lifton; Shrikant Mane; Mark Anderson; Bertrand Boisson; Vivien Béziat; Shen-Ying Zhang; Evangelos Andreakos; Olivier Hermine; Aurora Pujol; Pärt Peterson; Trine Hyrup Mogensen; Lee Rowen; James Mond; Stéphanie Debette; Xavier deLamballerie; Charles Burdet; Lila Bouadma; Marie Zins; Pere Soler-Palacin; Roger Colobran; Guy Gorochov; Xavier Solanich; Sophie Susen; Javier Martinez-Picado; Didier Raoult; Marc Vasse; Peter Gregersen; Carlos Rodríguez-Gallego; Lorenzo Piemonti; Luigi Notarangelo; Helen Su; Kai Kisand; Satoshi Okada; Anne Puel; Emmanuelle Jouanguy; Charles Rice; Pierre Tiberghien; Qian Zhang; Jean-Laurent Casanova; Laurent Abel; Aurélie Cobat.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1225906.v1

ABSTRACT

SARS-CoV-2 infection fatality rate (IFR) doubles with every five years of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ~20% of deceased patients across age groups. In the general population, they are found in ~1% of individuals aged 20-70 years and in >4% of those >70 years old. With a sample of 1,261 deceased patients and 34,159 uninfected individuals, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to non-carriers. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRD was 17.0[95% CI:11.7-24.7] for individuals under 70 years old and 5.8[4.5-7.4] for individuals aged 70 and over, whereas, for autoantibodies neutralizing both molecules, the RRD was 188.3[44.8-774.4] and 7.2[5.0-10.3], respectively. IFRs increased with age, from 0.17%[0.12-0.31] for individuals <40 years old to 26.7%[20.3-35.2] for those ≥80 years old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84%[0.31-8.28] to 40.5%[27.82-61.20] for the same two age groups, for autoantibodies neutralizing both molecules. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, particularly those neutralizing both IFN-α2 and -ω. Remarkably, IFR increases with age, whereas RRD decreases with age. Autoimmunity to type I IFNs appears to be second only to age among common predictors of COVID-19 death.


Subject(s)
COVID-19
3.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3854683

ABSTRACT

Background: Although the SARS-CoV-2 mRNA vaccines have proven high efficacy, limited data exists on the duration of immune responses and their relation to age and side effects.Methods: We studied the antibody and memory T cell responses to Spike protein after the two-dose Comirnaty mRNA vaccine in 122 volunteers up to 3 months and correlated the findings with age and side effects.Findings: We found a robust antibody response after the second vaccination dose. However, the antibody levels declined at 6 and 12 weeks postvaccination, indicating a waning of the immune response. Regardless, the average levels remained higher compared to pre-vaccination or in COVID-19 convalescent individuals. The antibodies efficiently blocked ACE2 receptor binding to Spike protein of four variants of concern at one week but this was decreased at three months, in particular with B.1.351 and P1 isolates. 87% of individuals developed Spike-specific memory T cell responses, which were lower in individuals with increased proportions of immunosenescent CD8+ TEMRA cells. We found a decreased vaccination efficacy but fewer adverse events in older individuals, suggesting a detrimental impact of age on outcome.Interpretation: The mRNA vaccine induces a strong antibody response to four variants at 1 week postvaccination but decreases thereafter, in particular among older individuals. T cell responses, although detectable in the majority, were lower in individuals with immunosenescence. The deterioration of vaccine response needs to be monitored to define the optimal time for the revaccination. Funding: The Estonian Research Council, Icosagen Cell Factory, and SYNLAB Estonia.Declaration of Interests: None to declare. Ethics Approval Statement: The study has been approved by the Research Ethics Committee of the University of Tartu on February 15, 2021 (No 335/T-21). Patients signed informed consent before recruitment into the study.


Subject(s)
COVID-19
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.04.19.21255714

ABSTRACT

Background Although the SARS-CoV-2 mRNA vaccines have proven high efficacy, limited data exists on the duration of immune responses and their relation to age and side effects. Methods We studied the antibody and memory T cell responses to Spike protein after the two-dose Comirnaty mRNA vaccine in 122 volunteers up to 3 months and correlated the findings with age and side effects. Findings We found a robust antibody response after the second vaccination dose. However, the antibody levels declined at 6 and 12 weeks postvaccination, indicating a waning of the immune response. Regardless, the average levels remained higher compared to pre-vaccination or in COVID-19 convalescent individuals. The antibodies efficiently blocked ACE2 receptor binding to Spike protein of four variants of concern at one week but this was decreased at three months, in particular with B.1.351 and P1 isolates. 87% of individuals developed Spike-specific memory T cell responses, which were lower in individuals with increased proportions of immunosenescent CD8+ TEMRA cells. We found a decreased vaccination efficacy but fewer adverse events in older individuals, suggesting a detrimental impact of age on outcome. Interpretation The mRNA vaccine induces a strong antibody response to four variants at 1 week postvaccination but decreases thereafter, in particular among older individuals. T cell responses, although detectable in the majority, were lower in individuals with immunosenescence. The deterioration of vaccine response needs to be monitored to define the optimal time for the revaccination. Funding The Estonian Research Council, Icosagen Cell Factory, and SYNLAB Estonia. Research in context Evidence before this study The first studies addressing the immune responses in older individuals after the administration of SARS-CoV-2 mRNA vaccines have been published. We searched PubMed and medRxiv for publications on the immune response of SARS-CoV-2-mRNA vaccines, published in English, using the search terms “SARS-CoV-2”, “COVID-19”, “vaccine response”, “mRNA vaccine”, up to May 20th, 2021. To date, most mRNA vaccine response studies have not been peer-reviewed, and data on the dynamics of antibody response, role of age and side effects on SARS-CoV-2-mRNA vaccines in real vaccination situations is limited. Some studies have found a weaker immune response in older individuals after the first dose and these have been measured at a relatively short period (within one to two weeks) after the first dose but little longer-term evidence exists on the postvaccination antibody persistence. Added value of this study In this study, we assessed the antibody response up to three months after the full vaccination with Pfizer-BioNTech Comirnaty mRNA vaccine in 122 individuals. Our findings show strong Spike RBD antibody responses one week after the second dose with the capacity to block ACE2-Spike protein interaction, however, the antibodies declined significantly at three months after the second dose. The inhibition of ACE2-Spike interaction was weaker with South African (B.1.351) and Brazilian (P.1) than with Wuhan and UK (B.1.1.7) SARS-CoV-2 isolates. At three months 87% of vaccinated individuals developed either CD4+ or CD8+ T cell responses. Those negative for Spike-specific T cell response also tended to have lower Spike-specific antibody levels. In addition, CD4+ T cell response was decreased among vaccinated individuals with elevated levels of senescent CD8+ TEMRA cells. We found a weaker antibody response and faster waning of antibodies in older vaccinated individuals, which correlated with fewer side effects at the time of vaccinations. Implications of all the available evidence Our results show that two doses of Pfizer-BioNTech Comirnaty mRNA vaccine induce a strong antibody and T cell responses to Spike RBD region but the antibody levels are declined at three months after the second dose. Nevertheless, even at three months, the anti-Spike RBD antibody levels stay significantly higher than at prevaccination, after the first dose of vaccine, or in Covid-19 postinfection. Our findings implicate older individuals to have fewer vaccination adverse effects and weaker immune response after the vaccination and point to the need for more individualized vaccination protocols, in particular among older people.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.21.20216820

ABSTRACT

Background: In Estonia, during the first wave of COVID-19 total number of cases confirmed by PCR was 13.3/10,000, similar in most regions, including capital Tallinn, but in the hotspot of Estonian epidemic, an island Saaremaa, the cumulative incidence was 166.1/10,000. Aim: We aimed to determine the prevalence of SARS-CoV-2 IgG antibodies in these two regions, symptoms associated with infection and factors associated with antibody concentrations. Methods: Participants were selected using stratified (formed by age decades) random sampling and recruited by general practitioners. IgG were determined from sera by four assays. Symptoms of acute respiratory illness associated with seropositivity were analyzed by multiple correspondence analysis, antibody concentrations by multiple linear regression. Results: Total of 3608 individual were invited and 1960 recruited From May 8 to July 31, 2020. Seroprevalence was 1.5% (95% confidence interval (CI) 0.9-2.5) and 6.3% (95% CI 5.0-7.9), infection fatality rate 0.1% (95% CI 0.0-0.2) and 1.3% (95% CI 0.4-2.1) in Tallinn and Saaremaa, respectively. Of seropositive subjects 19.2% (14/73) had acute respiratory illness. Fever, diarrhea and the absence of cough and runny nose were associated with seropositivity in individuals aged 50 or more years. IgG concentrations were higher if fever, difficulty breathing, shortness of breath, chest pain or diarrhea was present, or hospitalization required. Conclusion: Similarly to other European countries the seroprevalence of SARS-CoV-2 in Estonia was low even in the hotspot region Saaremaa suggesting that majority of population is still susceptible to SARS-CoV-2. Focusing only on respiratory symptoms may delay accurate diagnosis of SARS-CoV-2 infection.


Subject(s)
Diarrhea , Dyspnea , Fever , Severe Acute Respiratory Syndrome , Cough , Chest Pain , COVID-19 , Respiratory Insufficiency
6.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-64299.v1

ABSTRACT

SARS-CoV-2 infection risks developing into life-threatening COVID-19 disease. Whereas age, hypertension, and chronic inflammatory conditions are risk factors, underlying host factors and markers for disease severity, e.g. requiring intensive care unit (ICU) treatment, remain poorly defined. To this end, we longitudinally profiled blood inflammation markers, antibodies, and 101 plasma proteins of hospitalized COVID-19 patients who did or did not require (ICU admission. Whereas essentially all patients displayed SARS-CoV-2-specific antibodies and virus-neutralization capacity within 12-15 days, a rapid, mostly transient upregulation of selective inflammatory markers including IL-6, CXCL10, CXCL11, IFNg, IL-10, and monocyte-attracting CCL2, CCL7 and CCL8, was particularly evident in ICU patients. In addition, there was consistent and sustained upregulation of apoptosis-associated proteins CASP8, TNFSF14, HGF, and TGFB1, with HGF discriminating between ICU and non-ICU cohorts. Thus, COVID-19 is associated with a selective inflammatory milieu within which the apoptotic pathway is a cardinal feature with potential to aid risk-based patient stratification.


Subject(s)
Hypertension , COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.08.20125112

ABSTRACT

Person-to-person transmission of SARS-CoV-2 virus has triggered a global emergency because of its potential to cause life-threatening Covid-19 disease. By comparison to pauci-symptomatic virus clearance by most individuals, Covid-19 has been proposed to reflect insufficient and/or pathologically exaggerated immune responses. Here we identify a consensus peripheral blood immune signature across 63 hospital-treated Covid-19 patients who were otherwise highly heterogeneous. The core signature conspicuously blended adaptive B cell responses typical of virus infection or vaccination with discrete traits hitherto associated with sepsis, including monocyte and dendritic cell dampening, and hyperactivation and depletion of discrete T cell subsets. This blending of immuno-protective and immuno-pathogenic potentials was exemplified by near-universal CXCL10/IP10 upregulation, as occurred in SARS1 and MERS. Moreover, specific parameters including CXCL10/IP10 over-expression, T cell proliferation, and basophil and plasmacytoid dendritic cell depletion correlated, often prognostically, with Covid-19 progression, collectively composing a resource to inform SARS-CoV-2 pathobiology and risk-based patient stratification.


Subject(s)
COVID-19 , Sepsis , Tumor Virus Infections
SELECTION OF CITATIONS
SEARCH DETAIL